Characteristic of Quaternion Algebra Over Fields

نویسندگان

چکیده

Quaternion is an extension of the complex number system. are discovered by formulating 4 points in 4-dimensional vector space using cross product between two standard vectors. algebra over a field with bases and elements members field. Each element quaternion has inverse, despite fact that ring not commutative. Based on this, purpose this study to obtain characteristics split determine how it interacts central simple algebra. The research method used paper literature algebra, results establish equivalence as well theorem relating conclusion obtained from five different dimensions less than equal four.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Matrix Theory over the Complex Quaternion Algebra

We present in this paper some fundamental tools for developing matrix analysis over the complex quaternion algebra. As applications, we consider generalized inverses, eigenvalues and eigenvectors, similarity, determinants of complex quaternion matrices, and so on. AMS Mathematics Subject Classification: 15A06; 15A24; 15A33

متن کامل

Splitting quaternion algebras over quadratic number fields

We propose an algorithm for finding zero divisors in quaternion algebras over quadratic number fields, or equivalently, solving homogeneous quadratic equations in three variables over Q( √ d) where d is a square-free integer. The algorithm is deterministic and runs in polynomial time if one is allowed to call oracles for factoring integers and polynomials over finite fields.

متن کامل

Affine circle geometry over quaternion skew fields

We investigate the affine circle geometry arising from a quaternion skew field and one of its maximal commutative subfields.

متن کامل

Small Zeros of Hermitian Forms over a Quaternion Algebra

Let D be a positive definite quaternion algebra over a totally real number field K, F (X, Y ) a hermitian form in 2N variables over D, and Z a right D-vector space which is isotropic with respect to F . We prove the existence of a small-height basis for Z over D, such that F (X, X) vanishes at each of the basis vectors. This constitutes a non-commutative analogue of a theorem of Vaaler [19], an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cauchy

سال: 2023

ISSN: ['2477-3344', '2086-0382']

DOI: https://doi.org/10.18860/ca.v7i4.17625